

Diagnostic Techniques for Multiphase Blast Fields

Richard Ames
Raytheon Missile Systems

Michael Murphy
Lawrence Livermore National Laboratory

With Contributions from

Scott Groves, Mitch Moffett

LLNL

Don Cunard, Alan Orht

AFRL Eglin

Jason Drotar

NSWC Dahlgren

ılti-Phase Blast Flows

Inlimited Pages and Expanded Features

- Multi-Phase Blast Flows are produced by particle-laden explosives
- Can also be produced when a standard explosive entrains dust and debris
- A key unknown is how much energy/momentum is transported in each phase within the blast field

Typical MBX Blast Field

re Amounts of Momentum ox in MBX Blast Flows

Inlimited Pages and Expanded Features

- The solid-phase component of MBX blast fields carries a substantial amount of momentum and energy
 - . Can be as much as 50% for some blast flows
- As a consequence, characterization of this class of multiphase flows must accurately account for the solid phase

Click Here to upgrade to Unlimited Pages and Expanded Features

Diagnostic Techniques

Unlimited Pages and Expanded Features

asurement Problem for Multi-Phase Blast Flows

- "Most pressure transducers are designed under the assumption of rough equivalence between small-scale, local loads and global, average loads
 - "Good assumption for gas-phase loads because the impulse associated with individual molecular impacts is extremely small
- "Not valid for distributed solid-phase loads
 - "Local loads much larger than global average

Unlimited Pages and Expanded Features

ily of Diagnostic Techniques

Impulse Traps

Unconfined Momentum Trap Momentum Trap

Cantilevered Ball Gauge

Inverted Ballistic Pendulum

- No time history information available
- " Easy to deploy
- "Simple physics

Time-Varying Diagnostics

Particle Streak Recorder

Hopkinson Pressure Bar

- " Provide time history information
- "Somewhat difficult to deploy
- Requires assumption-laden post-processing

Inconfined Momentum Trap (UMT)

Click Here to upgrade to
Unlimited Pages and Expanded Features

$$I = \frac{m_b l}{\sqrt{2h/g}}$$

- The Unconfined Momentum Trap (UMT) is a disk placed normal to the charge at some height
- The distance the trap is thrown is proportional to the impulse delivered to the face
 - . Assumes time scales associated with loads are much less than time scales associated with loading
 - . Neglects drag
- Different shapes can be used to provide information regarding target geometry effects

onfined Momentum Trap

- "Uses a disc on a slider tube with optical position encoder
- " The time-history of the motion provides a measure of the impulse delivered to the Face Plate
- "Face plate also includes a pressure gauge so that gas-phase loads may be measured

erted Ballistic Pendulum (IBP)

Click Here to upgrade to Unlimited Pages and Expanded Features

- The IBP is a large flat plate on a pivoting base
- Tip angle is proportional to impulse
- If the wall tips over the impulse is measured by the angular speed as the CG passes vertically over the pivot

e Cantilevered Ball Gauge

- Measures the total impulse delivered to a sphere on a slender rod via strain measurements that capture the vibratory motion
- Measurements taken in orthogonal directions in order to compute total loading in a plane normal to the sting mount
- "Under the assumption that the loading time scales << structural response time scales, total impulse is proportional to the magnitude of the structural response in the first bending mode

The Hopkinson Bar

$$r < \frac{0.465c_0}{2\pi vf}$$
 For less than 5% dispersion.

"High Frequency components of the load move more slowly through the bar, altering the signal

rticle Streak Recorder (PSR)

- " Uses a rotating disc behind a thin aperture
 - . Thin aluminum on a high-density foam core attached to an aluminum hub
 - . Different RPMc used at different standoffs to account for differences in blast duration
- Provides a measure of the time history of the number density of particles
 - . Can be used to estimate momentum flux given assumptions about the time dependence

al Data from Particle Streak Recorders

- The PSR data records give a measure of the time history of particle number density passing through the aperture
 - . Normally expressed as number of particles per unit area
 - . Errors arise when multiple particles produce a single hole
- " Also provides statistics on hole sizes
 - . Relationship to actual particle sizes is difficult to define

Impact Surface Analysis Technique

Click Here to upgrade to Unlimited Pages and Expanded Features

Image processing algorithm implemented in Matlab

Data Analysis Procedure

Unlimited Pages and Expanded Features

Momentum flux rate is simply the mass per particle times the average particle speed times number density flux rate

$$\frac{dp_A}{dt} = m_p V_p \frac{dN_A}{dt}$$

- Data from a number of tests show that the number density flux has a modified decaying exponential behavior
 - . t² term accounts for behavior at the front of the particle wave

" Particle speed is calculated based on arrival time and allowed to decay exponentially

$$V_p = \frac{d}{t} e^{-k_2(t-t_0)} \quad \text{for } t \ge t_0$$

Data Analysis Procedure

Click Here to upgrade to Unlimited Pages and Expanded Features

The data analysis procedure then reduces to finding four parameters: A_N , k_1 , k_2 , and t_0

Unlimited Pages and Expanded Features

Data Analysis Procedure

The data analysis procedure then reduces to finding four parameters: A_N , k_1 , k_2 , and t_0

For a given particle material and PSR surface material, the minimum marking speed V_{min} can be estimated.

First appearance of particles: to

Last evidence of particles: t₁

The estimate for V_{min} along with measurements of t₀ and t₁ will give the particle velocity decay constant k₂.

$$V_{p} = \frac{d}{t} e^{-k_{2}(t-t_{0})} \longrightarrow V_{min} = \frac{d}{t_{I}} e^{-k_{2}(t_{I}-t_{0})} \longrightarrow k_{2} = \frac{1}{t_{0}-t_{I}} ln \left(\frac{V_{min}t_{I}}{d}\right)$$

Unlimited Pages and Ex

ing the Impulse from the PSR Data

- Once the constants A_N, k₁, k₂, and t₀ are determined, the solid-phase impulse can be computed
- The impulse (per unit area) is the time integral of the momentum flux rate
 - Assumes particle impacts are perfectly plastic
- "Given the total impulse measurement from the Unconfined Momentum Trap, the difference between the two is the gas-phase impulse
 - . Note that these values are usually normalized to surface area

$$I_{A,SP} = \int_{t_0}^{\infty} \frac{dp_A}{dt} dt$$

$$I_{A,SP} = \frac{m_p dA_N \left[1 + (k_1 + k_2)t_0\right]}{\left(k_1 + k_2\right)^2}$$

$$I_{A,tot} = I_{A,GP} + I_{A,SP}$$

$$\uparrow \qquad \qquad \uparrow$$
 From momentum
$$_{trap}$$
 From PSR

Click Here to upgrade to Unlimited Pages and Expanded Features

Wrap-Up and Summary

use period has ended. Thank you for using PDF Complete.

erview of Techniques

Diagnostic Technique	Time varying?	Separates loads by phase?	Measurement Fidelity
Unconfined Momentum Trap	No	No . total only	High
Confined Momentum Trap	No	Yes	Moderate
Inverted Ballistic Pendulum	No	Yes	Moderate
Cantilevered Ball Gauge	No	No . total only	Low
Hopkinson Pressure Bar	Yes	No . total only	Moderate
Particle Streak Recorder	Yes	No . solid phase only	Low

- This presentation has given an introduction to the state-of-the art in multiphase blast diagnostic techniques
- These techniques are generally time-integrated
 - Time-varying measurement techniques for solid-phase loads are relatively immature
- Improvements in hole detection will allow increases in the fidelity of the Particle Streak Recorder Technique
 - Currently investigating alternate impact surface configurations to enable higher signal-to-noise ratio